Selective control of multiple devices via finger recognition
نویسندگان
چکیده
منابع مشابه
An Embedded Based Finger Vein Recognition System for Mobile Devices
--In this project, we propose a real-time embedded finger-vein recognition system (FVRS) for authentication on mobile devices. The system is implemented on an embedded platform and equipped with a novel finger-vein recognition algorithm. Finger vein authentication is a new biometric method utilizing the vein patterns inside one’s fingers for personal identity verification. Vein patterns are dif...
متن کاملexploring the relationship between iranian efl learners multiple intelligences, locus of control and reading proficiency
12 چکیده تفاوت های فردی، به عنوان خصوصیات روانشناختی غالب، باید در سطوح مختلف تدریس و یادگیری زبان کاملاً مورد ملاحظه قرار گیرند. از میان تاثیرگذارترین سازه های روانشناختی که منجر به تفاوت های فردی می شوند، می توان ازهوش چندگانه و منبع کنترل نام برد. هوش چندگانه با جنبه های متفاوتی از هوش سر و کار دارد که ممکن است هر شخص از آن برخوردار باشد. منبع کنترل، به عنوان مفهوم روانشناختی دیگر، به استن...
15 صفحه اولFabrication of ZnO Nanowire Devices via Selective Electrodeposition
Fabrication of ZnO Nanowire Devices via Selective Electrodeposition Min Zhang, Zhaoying Zhou, Xing Yang, Xiongying Ye, and Zhong Lin Wang State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments and Mechanology, Tsinghua University, Beijing 100084, China School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Ge...
متن کاملStereo matching via selective multiple windows
Window-based correlation algorithms are widely used for stereo matching due to their computational efficiency as compared to global algorithms. In this paper, a multiple window correlation algorithm for stereo matching is presented which addresses the problems associated with a fixed window size. The developed algorithm differs from the previous multiple window algorithms by introducing a relia...
متن کاملNeural control of finger movement via intracortical brain-machine interface.
OBJECTIVE Intracortical brain-machine interfaces (BMIs) are a promising source of prosthesis control signals for individuals with severe motor disabilities. Previous BMI studies have primarily focused on predicting and controlling whole-arm movements; precise control of hand kinematics, however, has not been fully demonstrated. Here, we investigate the continuous decoding of precise finger move...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Korea Multimedia Society
سال: 2014
ISSN: 1229-7771
DOI: 10.9717/kmms.2014.17.1.060